
Defect Identification in Composite Structures Using 
Enhanced Signal Analysis 
Shen Hin Lim and Tomonari Furukawa 

IALR, 150 Slayton Avenue, Danville, VA 24540 
Department of Mechanical Engineering 

Virginia Polytechnic Institute and State University 
 

Final Report for FA23860814112 
 

Background 

The most commonly used NDI techniques for composite structures are based on the transmission 
and reflection of ultrasonic waves in composite structures. The patterns of such reflected and 
transmitted signals are used to detect anomalies in the structure indicating defects. Many such 
systems are commercially available and are widely used in manufacturing for production quality 
control and in maintenance of structures to detect defects due to operational factors. The 
calibration of such systems and the interpretation of the results to detect and characterize defects 
rely on skilled and experienced operators. The thorough inspection and evaluation of large 
structures is labor intensive and involves long elapse times. 

Aims and Objectives 

Aims 

The aim of this project is to develop a new approach and its theoretical and experimental 
framework, where this approach is able to automatically and rapidly quantify invisible defects in 
a composite structure through enhanced analysis of data from ultrasonic non-destructive 
inspection methods.  

Objectives 

The objectives of this project are to develop rapid automated techniques to: 
 Interrogate output from ultrasonic NDI equipment to identify the presence of defects. 
 Identify the type of defect, in particular delamination, disbanding, foreign body 

inclusions and porosity. 
 Characterize the damage with respect to its location and size. 

The completed research tasks to achieve the aims and objectives of this project are classified into 
two categories: 

 Theoretical framework: Stochastic defect identification under sensor uncertainties 
 Rapid field inspection by optimally guiding and controlling sensors 

Research Tasks 
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Theoretical framework: Stochastic defect identification under sensor uncertainties 

Theoretical formulation (Both Bayesian and KF) 
A sensor for NDE consisting of transmitter(s) and receiver(s), s is not fixed and thus has the 
motion model 

 1, ,s s s s s
k k k kx f x u w  

where s s
k x  is the state, s

ku  is the control input and s
kw  is the "system noise" of the sensor at 

time step k.  The motion model of ith defect id , is given by 

1
i id d

k kx x  

as the defect is stationary, and id d
k x  is the state of ith defect at time step k. The defect is 

detected and localized by the observations from the NDE sensor with respect to the NDE sensor 
frame.  To develop its model, let the field of view, or the observable region, of the sensor as  

  | 0 |i id
O

s d d s
k D k kPX  x x x  

which is influenced by a probability of detecting a single defect id   |id s
D k kP x x . Then, the 

observation model of the NDE sensor is probabilistically expressed as  
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where is d
kz  and is d

kv  are an observation and its observation noise, and   represents an ``empty 
element'', indicating that the observation contains no information on the defect or the defect is 
unobservable since it is not within the observable region.  In order to detect and localize defects 
with respect to a structure frame, the proposed approach further assumes the implementation of 
either an on-board device or a global measurement device for observation on the NDE sensor 
location with respect to the structure frame.  The model of this observation can be described as 

 ,s s s s
k k kz h x v  

with its observation noise s
kv . Suppose that n defects have been detected by the NDE sensor at 

time step k.  Observations available from and on the NDE sensor, which have been 
synchronously measured, are a sequence of readings on the NDE sensor location, 

 1: 1 , ,s s s
k kz z z  and a sequence of readings on $n$ defects from the NDE sensor, 

 1: 1 , ,i i id d d
k kz z z ,  1, ,i n   though some observations could be empty.  The notation  ·  

indicates an instance of  · .  Under the condition, the defect identification can be defined as 
identifying the locations of the n defects given by these observations, id

kx ,  1, ,i n  .  Since 
the defect locations identified are to be described with some confidence, it is more precise to say 



that the objective is to best update the belief  id
kp x  under the influence of the NDE sensor 

belief  s
kp x , where  ·p  represents a probability density function.   

 
Sensor and Observation Models 

The proposed stochastic defect identification technique starts with the approximation of motion 
and observation models by Gaussian distributions as the Gaussian assumption is valid if the 
frequency of update is high and the update is performed only based on positive observations.  In 
defect identification, the Gaussian assumption approximates and completes the motion models of 
the NDE sensor and the defects as 

 1,s s s s s
k k k k x f x u w  

 1, 1, ,i id d
k k i n  x x  

with the system noise  , ss
k kN ww 0 Σ . The defect motion model is deterministic unless it 

propagates in time.  Meanwhile, the observation models of the observations on and from the 
NDE sensor are both probabilistically given by 

s s s
k k k z x v  

 , 1, ,i i is d s d s d
k k k k i n     z x x v  

where  , ss
k kN vv 0 Σ  and  , s diis d

k kN vv 0 Σ . The observations are directly on the state of the 
NDE sensor and the state of the defect relative to the NDE sensor.  The observation models are 
single-conditioned since the Gaussian assumption does not allow the observable region to be 
defined.   
 
Sensor and Defect Identification 

Having the motion and the observation models defined with the Gaussian assumption, the 
proposed technique updates the mean and the covariance of the NDE sensor and defects beliefs 
rather than their entire belief distributions using the EKF.  The formulations of the EKF yield the 
mean of both the beliefs predicted from the mean of their respective previous beliefs as 

 | 1 1| 1,s s s s
k k k k k  x f x u  

| 1 1| 1
i id d

k k k k  x x  

where  ·
| 1k kx  represents the belief of  ·  at time step k given observations up to k-1.  The notation 

 ·  indicates a mean of belief.  Since the NDE sensor and the defects have no correlation in 
motion, the prediction of covariance can also be independently treated although thorough matrix 
analysis is necessary.  Let the bundled mean and the covariance of the NDE sensor and defects as 

   1
| | | | | |, , , , ns d s d d

k k k k k k k k k k k k x x x x x x  and 
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and the observation as  1, , , ns s d s d
k k k kz z z z .  The covariance prediction is collectively given 

by 

| 1 1 1| 1 1k k k k k k k     x x wΣ A Σ A Σ  

or, by knowing 
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with each element as 
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It is given in matrix-vector form as 
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or individually 
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where ,n nI  is an identity matrix of both row and column sizes with n set of state variables of a 
NDE sensor or a defect.  Note that, to avoid complexity, the number of state variables of a NDE 
sensor and that of a defect are assumed to be identical in this paper. The correction of mean is 
given by 

 | | 1 | 1k k k k k k k k k   x x K z C x  

or, with the elements of vectors and matrices, 
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The matrix-vector representation results in the individual correction of a sensor and defects as:   
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The correction of covariance, on the other hand, is given by 

 | | 1k k k k k k Σ I K C Σ  

which, in matrix-vector form, can be written as 
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Thus, this derives each set of elements of the covariance as 
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The Kalman gain that minimizes the trace of variances and enables optimal estimation is given 
by 
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where the matrix kS  is given by 
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or, in the most compact form,  

 

 

1, ,

1, ,

| 1

| 1 | 1 1,

| 1 | 1 ,

1, , 1, , 1,

1

| 1 | 1
,

| 1 | 1 ,

s

j

i

s dij i ji

ss
k k k

sdss
k k k k

i j

ss d s
k k k k

i j

ss
k

sd
k

n

ds
k

n

dd sd d dss d s
k k k k k k k k k

i
k

n ijn n
diag








 

 
 

   
 



   







 

     

v

v

Σ Σ

Σ Σ

Σ Σ

Σ Σ Σ

S

Σ

S

S Σ

S
 

Extension for Identification of Defects of Unknown Number 

The exploration of a new area may results in identifying a defect that is not found in the current 
list.  Assume that (n+1)th defect has been detected at the kth measurement with observation 

1ns d
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z .  Similarly to the other defects, the motion and the observation models of the defect are 
given by 
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motion, the prediction is simply  
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The independence of the mean correction for each sensor and defect yields the mean correction 
for (n+1)th defect as 
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The correction of covariance, on the other hand, is conducted with all the sensor and defects.  Let 
the matrix constructed with n defects be  ·

nn , the matrices associated with (n+1)th defect be 
 ·
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n .  The correction of covariance is offered by  
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where the Kalman gain is computed from Eq. (\ref{eq:K}).  The extraction of the update of 
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most importantly describes that the covariance of the sensor and the present defects will be 
influenced by the newly detected defect.   
 
Evaluation of identification 

The uncertainty described by a covariance matrix can be represented by a single measure to 
quantify the result of identification.  The measure proposed to quantify various uncertainties is 
the differential entropy, which describes the absolute value of uncertainty in continuous space 
and thus allows us to evaluate the identification result with a reliability criterion.  One type of 
reliability criterion introduced using the differential entropy is the uncertainty of individual 
sensor or defect location: 
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where sn  is the number of state variables for a NDE sensor or a defect, since individual 
evaluation allows us to identify which individual is comparatively more uncertain than others.  
Another type of quantity proposed for evaluation is the differential entropy quantifying the 
uncertainties of all the sensor and defects, which is also defined as the total differential entropy:  

  ·1 ln 2 det
2

snn
k

n nn
keH  Σ  

This evaluates the overall performance of the identification.   
 

Numerical Examples 

This section investigates the performance of the proposed stochastic defect identification 
technique in two steps. The first step solves an algebraic problem that approximates a defect 
identification problem with different parameters (Tests 1-3) and analyzes the mechanisms of the 
proposed technique. After the parametric studies, the applicability of the proposed technique to 
the identification of defects is described in the second step (Test 4).  

Concept Proving by Algebraic Problem 

The defect identification problem defined for Tests 1-3 attempts to identify a single defect in a 
rectangular specimen by a NDE sensor.  Figure 1 illustrates the setup of the defect identification 
test.  A defect is located near the center of the specimen, and the NDE sensor moves linearly 
along the x direction across the specimen once approaching to the defect and then getting far 
away.  The motion model of the NDE sensor in Equation is simplified as:  

1
s s s s
k k k k  x x u w  

where s
ku  produces a positive linear increment in x component.  

 

Figure 1 Setup of the defect identification for Tests 1-3. 

Table 1 lists the parameters and formulations used commonly to create measurements in Tests 1-
3.  The measurements were created by firstly specifying the true state of the NDE sensor and the 
first defect and then adding noises with specified variances.  The defect state used to create 



measurements was  1* 0,0d x , so that it is expected that the proposed technique finds the 

defect around 1*dx  while also identifying the sensor position appropriately.  The system noise s
kw  

and the observation noise for the sensor s
kv  were respectively given by diagonal matrices.  As 

one of the simplest approximate implementations of the NDE sensor, which detect bearing more 
accurately than range, the observation noise for a defect has the covariance as:  
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where s d
kl  and s d

k  are the distance and the angle of the mean defect state based on the mean 
sensor state,  is a scaling factor, and 2 in the diagonal matrix makes the observation directional.  
Distance errors of the estimated identified defect and sensor states to their true states, given by 

   · · *DistanceError k k x x  

are also utilized as one of the metrics to evaluate the performance of the proposed technique, 
where  ·  is referring to either the identified defect or the sensor. 

Table 2 Parameters and formulations commonly used to create measurements in Tests 1-3. 

Parameter True Parameter Proposed 
1*dx   0,0  1 1d d

kΣ   1 1 1 1
0 0,d d d d

x ydiag    
*

0
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kΣ   0 0,ss ss
x ydiag    
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Transitional performance (Test 1) 

In order to investigate its transitional performance and the mechanism of estimation, the 
proposed technique was first applied to estimating the defect with three different sets of prior and 
empirical knowledge of the sensor.  Table 3 shows all the prior and the empirical knowledge 
used in the three cases. In Case 1, the state of the NDE sensor was assumed to be precisely 
known, thus setting the mean of its prior knowledge to the true state *

0 0
s sx x , the variances of its 

prior knowledge to all near-zero 0
ss Σ 0  and the variances of the empirical knowledge to all 

near-zero s s

k k w vΣ Σ 0 .  Case 2 had uncertainties in the prior and the empirical knowledge on 



the NDE sensor but they are smaller than those of the defect whereas the uncertainties of the 
NDE sensor were higher than those of the defect in Case 3.  Since the prior calibration generally 
gives accurate statistical knowledge, the same covariances were used to create measurements.   

Table 3 Parameters in Test 1 

Parameter True Parameter Case 1 Case 2 Case 3 
   1

0
dx   1,1   1,1   1,1  
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Figures 2(a) and 2(b) show the transitions of the distance errors of the identified defect and 
sensor states to their true states in Cases 1-3 while the transitions of the computed variances of 
the defect and the sensor are shown in Figures 3(a) and 3(b).  The results first show that the 
identified defect state converges toward the true state as the number of measurements acquired 
increases no matter what the sensor uncertainties are, indicating the ability of the proposed 
technique in handling sensor uncertainties.  Meanwhile, the results also show a slower 
convergence rate and a higher distance error with larger sensor uncertainties, which is largely 
due to the error of estimating the sensor state resulting from the sensor uncertainties.  The 
effectiveness of the proposed technique can be additionally understood from the transition of the 
computed variances of the defect and sensor.  The variances of the defect keeps decreasing with 
increase in the number of measurements in all the cases even after the sensor approached the 
defect most closely at the 11th measurement.  This is because the defect identification is carried 
out by correction with no prediction and thus does not propagate uncertainty regardless of the 
distance of the sensor to the defect.  The variances in Case 1 particularly approaches zero due to 
the the absence of sensor uncertainties.  The variances of the sensor, on the other hand, can 
increase as the result of Case 3 notably depicts since the motion model increases the variances.  
These results indicate that the variances of each defect and sensor are independently controlled 
by its own prediction whilst the correction interactively influences the variances.   



 

(a)                                                                        (b) 

Figure 2 Identified means vs. measurements in Test 1 

 

(a)                                                                           (b) 

Figure 3 Computed variances vs. measurements in Test 1. 

Figures 4 show the individual differential entropies of the defect and the NDE sensor and the 
total differential entropy in Cases 1–3.  Since the differential entropy is a quantity extracted from 
variances, the behavior of the differential entropy inherits that of variances.  Note that the 
negative values for differential entropy of the sensor of Case 1 are resulted from substitution of 

ss Σ 0 . Nevertheless, the quantification of uncertainty by a scalar value clearly makes the 
differential entropy useful and valuable as one can, for instance, judge the completion of a defect 
identification test based on the value of the differential entropy.  If the reliability of the defect 
identification is only concerned, the differential entropy of the defect dH  may be the reference 
entropy.  If the optimal sensor control is pursued for maximally reliable defect identification, 
total differential entropy H may be considered.   



 

(a)                                                                            (b) 

 

(c) 

Figure 4 Differential entropies vs. measurements in Test 1 

Effect of sensor uncertainties (Test 2) 

Having understood its mechanisms of performance and effectiveness in more detail, the 
performance of the proposed technique was next investigated by solving estimation problems 
each with a different set of sensor uncertainties.  Table 4 lists the parameters used to identify the 
defect by the proposed technique.  The prior and the empirical knowledge on the NDE sensor 
were varied within the range specified by x  and y  while the number of measurements was 
set to 15.  Due to the variation, it is possible to investigate the influence of the prior and the 
empirical knowledge on the proposed technique.  The maximum limits of the prior and the 
empirical knowledge of the sensor were both set to 10 to comparatively investigate the influence 
of the prior and the empirical knowledge. 

Table 4 Parameters in Test 2     0.25,10 , 0.25,10x y     



Parameter True Parameter Case 1 
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Figures 5(a)-5(c) show the distribution of the individual and total differential entropies with 
varying prior and empirical knowledge on the NDE sensor, whilst Figure 5(d) shows the 
distribution of the distance error of the identified defect state to the true defect state.  The results 
first show the increase of all the individual and total differential entropies with respect to the 
increase of both the prior and the empirical knowledge.  The prior knowledge has much less 
influence since the empirical knowledge has updated it 15 times, and its effect appears only 
when the empirical knowledge is uncertain.  The increase of not only the differential entropy of 
the sensor sH  but also that of the defect dH  is due to the interactive influence of the 
covariances of the defect and the sensor.  The identified defect state has a larger distance error 
when the empirical knowledge is more uncertain, but more certain prior knowledge caused a 
larger error due to its wrongness.  The result concludes that the accuracy of identification drops 
in addition to the reliability when the empirical knowledge is uncertain.   

 

(a)                                                                               (b) 



 

    (c)                                                                               (d) 

Figure 5 Differential entropies and distance errors vs. sensor uncertainties in Test 2. 

Effect of defect uncertainties (Test 3) 

In this subsection, the ability of the proposed technique for identification under different defect 
uncertainties was investigated.  Table 5 lists the parameters of the parametric study where the 
prior and the empirical knowledge on the defect, 1 1

0
d dΣ  and 1s d

k
vΣ  were varied while those of the 

NDE sensor were fixed.  Note that 1 1
0
d dΣ  was modified within the range specified by x  and  

1s d

k
vΣ  was varied using substitution of  , which was differed within the range specified by y , 

into the observation noise equation. Similarly to the previous test, identification results after 15 
measurements were investigated.   

Table 5 Parameters in Test 3     0.25,10 , 0.1,2x y     
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Figures 6(a) and 6(b) show the distributions of the differential entropy of the defect and the 
distance error with varying prior and empirical knowledge on the defect.  Similarly to the study 
varying prior and empirical knowledge on the sensor, the differential entropy increases as 
uncertainty in the prior and empirical knowledge on the defect increases while the distance error 
increases in empirical knowledge and decreases in prior knowledge.  The result, together with 
the result in Test 2 suggests that the defect identification be completed after the defect 
differential entropy has dropped and reached a specified value after the empirical knowledge, 
with enough measurements, has dominated the identification.     

 

(a)                                                                        (b) 

Figure 6 Defect differential entropy and distance errors vs. defect uncertainties in Test 3. 

Application to Non-destructive Evaluation (Test 4) 

Since the number of defects in a practical scenario could be multiple and is unknown, the 
scenario of this subsection has located multiple defects in a square test specimen.  Figure 7 
shows the test specimen and the practical setup of the non-destructive evaluation.  Three defects 
were located in a wide area to further resemble a practical problem where the defects are to be 
identified through search.  In order to measure the sensor location with uncertainties most easily, 
a global camera was attached to view the sensor location over the entire test specimen.  Based on 
the standard instructions, the transducer was slid on the specimen using the creeping line search 
pattern to search for defects and identified the location of each defect once it has been detected 
by the transducer.  In an attempt to identify the defect location most reliably, or reduce the value 
of defect differential entropy, the identified defect was surrounded in a square motion.  The 
surrounding motion continued until its differential entropy had reached a predetermined 
threshold value.   



 

(a)                                                                          (b) 

Figure 7 Test specimen and experimental setup in Test 4. 

Table 6 lists the parameters used to create measurements as well as the prior knowledge, the 
empirical knowledge and the threshold value of defect differential entropy used by the proposed 
technique.  In order to demonstrate its wide applicability to defect identification, the prior 
knowledge of only the second defect was assumed to be known.  It is to be noted that *s

k wΣ 0  

and * Consts

k vΣ  since the global camera usage makes the estimation of the sensor location only 
through correction with fixed variances of the observation model.   

Table 6 Parameters in Test 4 

Parameter True Parameter Proposed 
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Figure 8(a) shows the path of the transducer motion where the transducer has covered the entire 
specimen and detected and surrounded all the three defects.  Shown in Figure 8(b), meanwhile, is 
the transition of the defect differential entropies as well as the vertical lines each exhibiting the 
completion of identification of a defect.  It is first seen that the proposed technique can identify 
defects regardless of the availability of prior knowledge.  The result also shows that the 



differential entropies drop significantly by the square motion after detection.  In addition, all the 
defect differential entropies are seen to keep decreasing irrespective of the sensor location owing 
to the stochastic identification.  Figure 8(c) shows the resulting transition of the distance error of 
each identified defect to its true location.  The identified defect locations well match with the 
true locations and, similarly to the differential entropies, the identified defect locations are 
continuously accurate regardless of the sensor location although their behavior is noisier.   

 

(a)                                                                            (b) 

 

(c) 

Figure 8 Resulting path, defect differential entropies and distance errors in Test 4 

Rapid field inspection by optimally guiding and controlling sensors 

A new framework to identify defects under the presence of sensor uncertainties has been 
developed, where the framework represents the beliefs of defects and sensor location by a 



probabilistic density function and updates them in time and measurement using extended Kalman 
filter (EKF). Figure 9 presents the architecture of the theoretical framework, where the 
framework is divided into two processes, which are the deterministic and stochastic processes. 
The deterministic process begins with an inspector starting the sensor motion. This is modeled 
by a motion model to determine the estimated sensor location prior the current measurement s

kx , 
where this model is based on the uncertainty by the sensor motion and sensor location of the 
previous measurement. The s

kx  then acts as the input to determine the sensor estimated location 
prior the following measurement using the same motion model. Concurrently, the location s

kx  is 
utilized to model the measured defect and sensor locations is d

kz  and s
kz using two different 

sensor models. The location is d
kz  is determined by a wave signal sensor model that utilizes a 

database developed using Finite Element Analysis (FEA) while location s
kz  is given by a camera 

sensor model. In the stochastic process, the belief of the sensor, which is represented by a mean 
and covariance, is first computed by the prediction formulations of EKF based on the sensor 
motion model, the uncertainty by the sensor motion represented by covariance 

s

k
wΣ  and prior 

knowledge of the sensor 0
sx  and 0

sΣ . The beliefs of the defects and sensor are then updated by 
the correction formulations of EKF using observations and their empirical knowledge 

s di

k
vΣ  and 

s

k
vΣ , prior knowledge of the defects 0

idx  and 0
idΣ , and previously determined belief of the 

sensor from the prediction formulations. The resultant beliefs of the defects and sensor, 
collectively as |k kx  and |k kΣ , are then utilized as the past beliefs for the update in time and 
measurement of the following sensor motion and observations. The covariance |k kΣ  is also 
quantified to differential entropy H and guides the inspector for the next sensor motion. The 
rapid field inspection is repeated until the differential entropy is below a set threshold. 
 

 

Figure 9 The architecture of the theoretical framework 



Since the beliefs are recursively 
maintained during the sensor motion 
and observations, the proposed 
framework considers not only the 
current observation but also the prior 
knowledge, the past beliefs and the 
past observations. In addition, the 
beliefs of the defect and the sensor 
are updated concurrently and 
interactively and thus allow 
identification under sensor 
uncertainties.  

Figure 10 shows the system diagram 
of the rapid field inspection, noting 
the required instruments and connection between them. The computer generates the signal for 
transmitter excitation and is amplified using the buffer amplifier prior sending to the PZT, which 
is acting as a transmitter. The signal from the receiver, which is either another PZT or an 
ultrasonic transducer, is amplified using a charge amplifier before being analyzed by the signal 
analysis in the computer. Concurrently, the position of the receiver is monitored by the camera. 
The validity of the signal from the receiver is verified by the digital oscilloscope. Figure 11 
shows the experimental setup for the rapid field inspection and based on the system diagram. 

 

 

Figure 10 System diagram for rapid field inspection 



Figure 11 The experiment setup for rapid field inspection 

Defect, transmitter and receiver layouts on the specimen 

Figure 12 shows the defect and transmitter positions of the specimen as well as the size of the 
specimen while Figure 13 illustrates the example of the transmitter and receiver layouts on the 
specimen for the rapid field inspection framework, where two different receiver layout sets are 
given in Table 7. 

 

Figure 12 Defect and transmitter positions on the specimen 

 

Figure 13 Example of receivers’ position layouts on the specimen 

Table 7 Receivers’ position layout on the specimen 



 Receiver 1 Receiver 2 Receiver 3 

Layout 1 [7, 3.75] [7, 2.125] [8.75, 2.75] 

Layout 2 [6.75, 5] [6.75, 1.25] [15.25, 4.5] 

 

The position of the defect is evaluated based on the signal analysis of the signals from the transmitter 

and receivers using an appropriate filter. Figure 14 shows the comparison between three different filters, 

which are Butterworth, Elliptic and Chebyshev II filters. Based on this analysis, it is shown that the 

Elliptic signal is the preferred choice due to its capability to reduce the ‘overturn’ effect shown in the 

Butterworth and Chebyshev II filters.   

 

Figure 14 Comparison between different filters 

Figures 15 and 16 show the evaluation of the defect existence and distance approximation of the defect 

position based on the receiver. As shown in Figure 15, there is a time lag between the signals from the 

transmitter and receivers. This is better shown in Figure 16, and the time difference is used as a factor 

with the sampling frequency of the receiver and transmitter as well as the speed of sound of the 

specimen materials.  



 

Figure 15 Evaluation of the defect existence based on the transmitter and receiver signals 

 

Figure 16 The difference between ‘with’ and ‘without defect’ signals  

Implementation of the rapid field inspection 
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With the given capability to determine the position of the defects, this subsection shows the 
implementation of the rapid field inspection. In this implementation, a transmitter and three static 
receivers are utilized to provide the prior knowledge of the position and number of defects on the 
specimen. The rapid field inspection is applied using an ultrasonic transducer to provide a better 
position estimation of the defects, where the position of the ultrasonic transducer is estimated by 
a camera system shown in Figure 11 and the implementation aims to reduce the covariance to a 
few certain differential entropy thresholds. Figure 17 shows the initial setup of the rapid field 
inspection, where Figure 17(a) depicts the position of the transmitter, which is appointed with 
green paper and the static receivers, which are given by the orange papers, and also the prior 
knowledge of the identified defects, which are marked as blue color. This figure shows that three 
defects are identified. Meanwhile, Figure 17(b) shows the estimated position of the ultrasonic 
transducer, which are marked as magenta color. The red color indicates the targeted defects to be 
provided better estimation using the ultrasonic transducer and implemented rapid field inspection. 
The rapid field inspection consists of two phases:  

1) Reduction of all the defects differential entropy to meet the first differential entropy threshold 

2) Traversing motion of the transducer to further reduce all the defects differential entropy to 
meet the second differential entropy threshold. 

    

(a)                                                                          (b) 

Figure 17 The initial setup of the rapid field inspection implementation. 

Figure 18 shows the sequential steps of the rapid field implementation. Figures 18(a) indicates 
the motion of the transducer and this motion provide a better estimation and covariance of the 
first targeted defect, as illustrated by the covariance size difference of the targeted defect when 
compared with other defects. Figure 18(b) shows that the covariance of the first defect has met 
the first differential entropy threshold and the estimated position and covariance has changed to 
green color, and once this threshold is met, the ultrasonic transducer changed its target to next 
defect.  



 

(a)                                                                    (b) 

 

   (c)      (d) 

 

(e) 

Figure 18 The steps of the rapid field inspection implementation. 



The same step applied to the first targeted defect is used to estimate the remaining defects to the 
first differential entropy threshold (green), as shown in Figure 18(c). Figure 18(d) illustrates the 
beginning of the traversing motion of the ultrasonic transducer when all the defects covariance 
have met the first differential entropy threshold. This traversing motion is utilized to further 
improve the estimation of the defects to meet the second differential entropy threshold. The 
completion of the rapid field inspection, which is illustrated in Figure 18(e), is achieved when all 
the defects covariance met the second differential entropy threshold, which is indicated by 
yellow color. Figure 19 shows the differential entropy transitions of the multiple defects based 
on the rapid field inspection implementation. Here, it is shown that the first and second 
differential entropy threshold are set as 11.6 and 7. 

 

Conclusion 

The system constructed from this project has the following capabilities: 

 Automated techniques to characterize defects; 
 Technique that stochastically estimates the states of defects; 
 Technique that allows active sensing; 
 Technique that enhances current signal analysis; 
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